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Abstract
Prototype selection is a promising technique for
removing redundancy and irrelevance from large-
scale data. Here, we consider it as a task assign-
ment problem, which refers to assigning each el-
ement of a source set to one representative, i.e.,
prototype. However, due to the outliers and uncer-
tain distribution on source, the selected prototype-
s are generally less representative and interesting.
To alleviate this issue, we develop in this paper a
Self-supervised Deep Low-rank Assignment mod-
el (SDLA). By dynamically integrating a low-rank
assignment model with deep representation learn-
ing, our model effectively ensures the goodness-
of-exemplar and goodness-of-discrimination of s-
elected prototypes. Specifically, on the basis of
a denoising autoencoder, dissimilarity metrics on
source are continuously self-refined in embedding
space with weak supervision from selected proto-
types, thus preserving categorical similarity. Con-
versely, working on this metric space, similar sam-
ples tend to select the same prototypes by design-
ing a low-rank assignment model. Experimental
results on applications like text clustering and im-
age classification (using prototypes) demonstrate
our method is considerably superior to the state-of-
the-art methods in prototype selection.

1 Introduction
Prototype selection is the task of finding exemplar samples,
called prototypes, from a large collection of data points. This
is at the center of many problems in data analysis and pro-
cessing field because it holds several advantages over data
storage, compression, synthesis, cleansing and visualization.
First, the memory cost for storing information on the data
can be significantly reduced using prototypes. Second, pro-
totypes help in clustering of data, and, as the most prototyp-
ical samples, can be used for efficient synthesis of new data
points. More importantly, the computational efficiency for
data modeling, such as classifier training [Garcia et al., 2012;
Zhang et al., 2018] and active learning [Lin et al., 2018],
can be improved by working on prototypes. In addition, s-
electing prototypes helps to remove redundant or irrelevant
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Figure 1: Assisted photo albuming (i.e. web media recommenda-
tion) by prototype selection. When we want to build a new photo
album, the only thing we need is to select exemplar samples related
to the initialized topic.

points, such as outliers. Finally, prototype selection has been
applied for anomaly detection [Cong et al., 2011], web me-
dia summarization and recommendation [Meng et al., 2016;
Cong et al., 2017] (see Figure 1), segmentation of dynamic
data [Elhamifar et al., 2016], and more.

To characterize the informativeness of prototypes in terms
of ability to represent the entire distribution, many selection
strategies have been proposed, generally including two cat-
egories. The first one involves greedy methods that select
next prototype with respect to the previously selected pro-
totypes, and usually maximizes submodular functions, such
as graph-cuts and facility location [Wang and Zhang, 2013;
Elhamifar and Kaluza, 2017; Krause et al., 2008]. Obvious-
ly, they usually result in high computational complexity. The
second category is comprised of model-driven methods that
aim to maximize global objective based on subspace leaning
or pairwise relationship. Their resulting solutions are closely
related to a variety of optimization algorithms.

Concretely, subspace leaning based models mainly focus
on the data that lie in one or several low-dimensional sub-
spaces. The Rank Revealing QR algorithm [Chan, 1987]
is a representative one. By representing data in a low di-
mensional space with possibly minimal representation error,
various effective models have been formulated to learn a s-
election matrix, such as the sparse dictionary selection (S-
DS) method [Cong et al., 2011] and sparse modeling repre-
sentative selection (SMRS) model [Elhamifar et al., 2012].



To further exploit data structure, some improved methods
have been proposed [Dornaika and Aldine, 2015; Wang et
al., 2017]. For instance, structured sparse dictionary selection
(SSDS) [Wang et al., 2017] method tried to select prototypes
with both representativeness and diversity via three structured
regularizers. However, by multi-linear coding criteria, these
methods are effective only when the samples from different
groups are sufficiently dissimilar.

In contrast, pairwise relationship based models aim at the
data that could be naturally grouped under a certain dissim-
ilarity metric. One naive approach is Kmedoids [Kaufman
and Rousseeuw, 1987], which finds k medoid centers as pro-
totypes by pursuing the minimum total distance from all sam-
ples. Some variants [Nellore and Ward, 2015] were fur-
ther proposed based on Kmedoids. Unlike Kmeans [Duda
et al., 2012] or Kmedoids, Affinity Propagation (AP) algo-
rithm [Frey and Dueck, 2007] does not require any initializa-
tion for prototypes, but has suboptimal property. To tackle
this issue, dissimilarity-based sparse subset selection (DS3)
method [Elhamifar et al., 2016] was recently proposed to s-
elect prototypes via a trace minimization model. In general,
this kind of methods performs well only under appropriate
similarity metric.

Furthermore, some real datasets do not live in a vector s-
pace, e.g., social network data or proteomics data. Therefore,
model-driven methods based on pairwise relationship have
more advantages on prototype selection. However, most ex-
isting algorithms suffer from imposing restrictions on the type
of pairwise relationship. More importantly, unreliable metric
caused by outliers or uncertain data distribution significantly
reduces the quality of prototypes. Inspired by representation
learning [Song et al., 2017], we consider introducing a unified
framework for dissimilarity learning and prototype selection.
As a result, the metric is efficiently self-refined with weak
supervision from prototypes, and conversely, prototypes are
more informative by using refined metrics. These construct
the basic motivation of our framework.

In summary, the main contributions of this work are high-
lighted as follows.

- By considering the prototype selection as a task assign-
ment problem, we develop a Self-supervised Deep Low-
rank Assignment model (SDLA), which aims to jointly
learn ideal dissimilarity metrics in embedding space and
select informative prototypes in metric space.

- Unlike DS3 [Elhamifar et al., 2016], inspired by the good
performance of deep representation learning, we propose
to learn dissimilarity metrics based on a variant of a de-
noising autoencoder, in which categorical similarity is pre-
served with weak supervision from prototypes.

- Working on the learned metric space, similar samples tend
to select the same prototypes by designing a low-rank as-
signment model, thus guaranteeing a diversified selection.

- The quality of prototypes selected by the proposed frame-
work is reasonably evaluated with examples in text cluster-
ing and image classification (using prototypes), showing
very promising results.

Figure 2: Illustration of prototype selection. Left: The full connec-
tion of m samples. Right: The entire source set is assigned to an
optimal subset of it, called prototype set.

2 The Proposed Framework
2.1 Problem Statement
Let X = [x1, . . . ,xm] ∈ Rd×m be the source data matrix
of m samples in Rd. As shown in Figure 2, we consider
the problem of selecting an interesting subset of m samples,
called prototype set, that can efficiently describe and summa-
rize all samples in source data. Inspired by DS3 [Elhamifar
et al., 2016], we primarily pursue the minimum assignment
cost based on pairwise relationships on source.

2.2 Problem Formulation
It is noteworthy that pairwise dissimilarity matrix D =

{dij}j=1,...,m
i=1,...,m between samples is directly given as the in-

put to DS3 [Elhamifar et al., 2016]. Actually, the given
{dij}, such as Euclidean distance or χ2 distance, may be
not discriminative due to uncertain distribution and outliers
in X , thus leading to a less representative and diversified s-
election. In light of the good performance of representation
learning [Bengio et al., 2013], we consider circularly refining
the dissimilarity metric and the selection indicator. Thereby,
available semantic information from selected prototypes can
be employed to learn the parameters of metric architecture,
while conversely, more discriminative metric can improve the
quality of prototypes. Towards this end, we develop a Self-
supervised Deep Low-rank Assignment model (SDLA) for
prototype selection as follows:

min
Θ,{zij}

m∑
j=1

m∑
i=1

ΦdSim(Φrep(Θ;xi),Φrep(Θ;xj))zij

+ ω1Ω(Θ) + ω2Ψ(Z) (1)

s.t.

m∑
i=1

zij = 1,∀j; zij ≥ 0,∀i, j,

where Φrep(Θ; ·) learns a deep representation of a sample,
and Θ is the set of related parameters. ΦdSim(·, ·) aims to
capture the dissimilarity of two samples in learned embed-
ding space, thus dij = ΦdSim(Φrep(Θ;xi),Φrep(Θ;xj)).
Z = {zij}j=1,...,m

i=1,...,m is a selection matrix, zij ∈ [0, 1] is the
probability of selecting xi as the prototype of xj , thus en-
forcing

∑m
i=1 zij = 1 for xj . The first term in the objective

function corresponds to the total assignment cost, the second
term corresponds to the constraints in the deep architecture,



Figure 3: Framework of prototype selection. First, we convert multimedia into source data. Then, a cyclic self-refinement learning way
between dissimilarity learning in embedding space and assignment model learning for prototype selection is implemented. Finally, we find
the optimal selection indicator, by which we select the discriminative prototypes and obtain a partitioning simultaneously.

and the last term corresponds to the number of prototypes.
ω1 and ω2 are nonnegative parameters to balance these terms.
Figure 3 provides an illustration of the proposed model in (1).

Concretely, for any xi and xj , if dij = 0, then zij = 1
due to low assignment cost, which implies that xi and xj
are from the same class. While zij = 0 if dij = ∞, which
implies that xi and xj are from different classes. Since Z
provides additional semantic information for all samples, D
will be learned more discriminatively by preserving categori-
cal similarity with weak supervision from Z.

Considering the separability of both objective and con-
straints in (1), we further divide (1) into two subproblems P1

and P2, which are cyclic self-refinement:

- P1 corresponding to the pairwise dissimilarity learning
module in Figure 3, is written as

min
Θ

m∑
i,j=1

ΦdSim(Φrep(Θ;xi),Φrep(Θ;xj))zij + ω1Ω(Θ)

(2)

- P2 corresponding to the assignment model learning mod-
ule in Figure 3, is written as

min
{zij}

m∑
i,j=1

ΦdSim(Φrep(Θ;xi),Φrep(Θ;xj))zij + ω2Ψ(Z)

s.t.

m∑
i=1

zij = 1,∀j; zij ≥ 0,∀i, j, (3)

The details about learning Θ and Z are introduced in Sec-
tion 3.1 and Section 3.2, respectively. As a result, the indices
of nonzero rows of the solution Z∗ correspond to the indices
of those samples that are chosen as the data prototypes. In
addition, Z∗ shows the membership of samples in X to pro-
totypes. That is, z∗j =

[
z∗1j , . . . , z

∗
mj

]T ∈ Rm corresponds to

the probability vector of xj being represented by each sample
inX . Therefore, we can obtain a partitioning ofX under the
rule that, if χ = {xl1 , . . . ,xlκ} denotes the set of selected
prototypes, we can assign xj to the prototype xδj by

δj = arg min
i∈{l1,...,lκ}

z∗ij (4)

Consequently,X is classified into κ groups corresponding to
κ prototypes via the selection matrix Z∗.

3 Optimization
3.1 Pairwise Dissimilarity Learning
As shown in (2), optimizing Θ aims to refine pairwise dis-
similarities {dij}, and it seamlessly connects the visual con-
tent and dissimilarity metric with weak supervision from Z.
However, due to the outliers and uncertain distribution onX ,
we consider generating distributed representation vectors and
pairwise dissimilarities on the basis of a denoising autoen-
coder [Vincent et al., 2008]. The general denoising autoen-
coder is formulated as:

x̃i ∼ q(x̃i|xi);
si = f(Wx̃i + b);

yi = f(W ′si + b′);

LR(yi,xi) = ‖xi − yi‖2 ;

Θ = arg min
W ,W ′,b,b′

m∑
i=1

LR(yi,xi).

(5)

where xi ∈ X is the original input vector, i = 1, . . . ,m,
and q (·|·) is the corrupting distribution. The stochastically
corrupted vector, x̃i, is obtained from q (·|xi). Generally,
x̃i = (1 − β)xi, and β is the corruption rate in the train-
ing phase. The hidden representation, si, is mapped from x̃i
through the network, which consists of an activation function
f(·), parameter matrix W , and parameter vector b. In the



Figure 4: Encoder for triplets of samples, in which di∗j is smaller
than dk∗j if zi∗j is much larger than zk∗j .

same way, the reconstructed vector, yi, is also mapped from
si with parameter matrixW ′ and parameter vector b′. Using
a loss function, LR(·, ·), we learn these parameters to mini-
mize the total reconstruction error of {yi} and {xi}.

Here, our proposed deep framework contains L layers of
nonlinear transformation, and the output si of the middle lay-
er is usually used as a representation vector that corresponds
to xi [Okura et al., 2017], thus si = Φrep(Θ;xi). Then
dij is captured in embedding space. In this work, we define
dij = ΦdSim(si, sj) = 1 − sT

i sj . However, si in (5) only
holds the information of xi. As shown in Figure 4, it is ex-
pected that the distance between two representation vectors si
and sj , i.e., dij , is smaller, if xj is more similar to xi com-
pared with xk (which is evaluated by zij > zkj). This is just
the weak supervision from selected prototypes via Z. For
this end, we add a triplet loss LT to the objective as follows:

LT (xi,xj ,xk) = log(1 + exp(dij − dkj)); (6)
In essence, the loss function LT is a penalty function for sam-
ple similarity to correspond to categorical similarity.

In addition, as observed in (2), the assignment cost LE
should be as small as possible.

LE(xi,xj) = dijzij ; (7)
Consequently, the total loss function LA(X) is rewritten

as follows:

LA(X) =

m∑
i=1

LR(yi,xi)︸ ︷︷ ︸
Reconstruction loss

+α1

m∑
j=1

m∑
i=1

LE(xi,xj)︸ ︷︷ ︸
Assignment loss in (2)

+ α2

∑
(i,j,k)∈T

LT (xi,xj ,xk)

︸ ︷︷ ︸
Self-supervised triplet loss

; (8)

where α1 and α2 are two hyperparameters to balance three
loss terms. T is the set of triplets, which is constructed by
associating each positive pair in the minibatch with a semi-
hard negative sample. Specifically, xi∗ and xk∗ denote the
positive and negative samples of xj in a triplet, and

i∗ = arg max
i∈{1,...,m}

zij ;

k∗ = arg min
k∈{1,...,m}

zkj .
(9)

Finally, we use the elementwise sigmoid function as f(·),
and masking noise as q(·|·). The following model is trained
by mini-batch Adaptive Moment Estimation:

Θ = arg min
{Wl,Wl

′,bl,bl′}
LA(X) + ω1Ω(Θ) (10)

where Ω(Θ) =
∑L/2
l=1 (‖Wl‖2F +‖bl‖22 +

∥∥Wl
′∥∥2

F
+
∥∥bl′∥∥2

2
),

and l = 1, . . . , L/2.

3.2 Assignment Model Learning
As shown in (3), optimizing Z aims to select a small num-
ber of prototypes with both diversity and representativeness.
Then we consider enforcing the lowest rank and sparsity
properties on Z. That is, Ψ(Z) = λ1rank(Z) + λ2card(Z),
where λ1, λ2 > 0, rank(Z) denotes the rank of Z, and
card(Z) denotes the number of nonzero elements of Z. As
observed in [Zhuang et al., 2012], the low-rankness criteri-
on is better at capturing the global structure of dissimilarity
D, while the sparsity criterion can capture the local structure
of each data vector. Specifically, low-rankness can encour-
age similar samples to have similar codes (i.e., ith and jth
columns of Z), so as to select the same prototypes. Thus, (3)
is rewritten as

min
Z

tr(DTZ) + λ1 ‖Z‖∗ + λ2 ‖Z‖0

s.t. 1TZ = 1T; Z ≥ 0,
(11)

where
∑m
i,j=1 dijzij = tr(DTZ), tr(·) denotes the trace op-

erator, and dij has been obtained from (2). ‖·‖∗ and ‖·‖0 are
the nuclear norm and `0-norm of a matrix, respectively. λ1

and λ2 are two nonnegative regularization parameters to bal-
ance these terms. 1 ∈ Rm is a column vector with all 1

′
s.

The problem in (11) could be solved by Inexact Augment-
ed Lagrangian Method (IALM). It is an iterative algorithm,
and thus needs to first introduce two auxiliary variables Z1

andZ2 to make the objective function separable. The follow-
ing problem is obtained:

min
Z,Z1,Z2

tr(DTZ) + λ1 ‖Z1‖∗ + λ2 ‖Z2‖1

s.t. Z1 = Z; Z2 = Z; 1TZ = 1T; Z2 ≥ 0,
(12)

where ‖·‖1 is the `1-norm of a matrix to relax the ‖·‖0. Then,
the augmented Lagrangian function of (12) is as follows.

L(Z,Z1,Z2) = tr(DTZ) + λ1 ‖Z1‖∗ + λ2 ‖Z2‖1
+ 〈∆1,Z −Z1〉+ 〈∆2,Z −Z2〉+

〈
δ3,1

TZ − 1T
〉

+
η

2
(‖Z −Z1‖2F + ‖Z −Z2‖2F +

∥∥1TZ − 1T
∥∥2

2
) (13)

where ∆1, ∆2 ∈ Rm×m and δ3 ∈ Rm are the Lagrange
multipliers. η is a penalty parameter.

According to the IALM, the objective function converges
with a sequence of closed form updating steps. The variable
Z, Z1, or Z2 is updated with other variables fixed. The de-
tailed updating rules are presented as follows.

Z =arg min
Z
L(Z) = (2ηI + η11T)−1(η(Z1 +Z2

+ 11T)−∆1 −∆2 −D − 1δ3)
(14)



Algorithm 1 The implementation of SDLA

Input: X , λ1, λ2, ρ, α. Initial.: k ← 0,D(k).
1: repeat
2: Initial. t← 0, Z(t) = Z

(t)
1 = Z

(t)
2 = Z(k), η(t) = 1,

∆
(t)
1 = ∆

(t)
2 = 0, δ(t)

3 = 0.
3: while not converged do
4: Update Z(t+1) according to (14);
5: Update Z(t+1)

1 according to (15);
6: Update Z(t+1)

2 according to (16);
7: ∆

(t+1)
1 ←∆

(t)
1 + η(Z(t+1) −Z(t+1)

1 );
8: ∆

(t+1)
2 ←∆

(t)
2 + η(Z(t+1) −Z(t+1)

2 );
9: δ

(t+1)
3 ← δ

(t)
3 + η(1TZ(t+1) − 1T);

10: η(t+1) ← ρη(t);
11: t← t+ 1;
12: end while
13: Z(k) ← Z(t);
14: Update Θ in deep architecture (10);
15: D ← dij = ΦdSim(Φrep(Θ;xi),Φrep(Θ;xj));
16: D(k+1) = D(k) + αD; // Update with memory
17: k ← k + 1;
18: until Convergence criterion satisfied
Output: Optimal solution Z∗ = Z(k).

whereZ in (14) is computed by equating the partial derivative
of (13) with respect to Z to zero.

Z1 =arg min
Z1

L(Z1) = Γλ1η−1(Z +
1

η
∆1) (15)

Z2 =arg min
Z2

L(Z2) = max(Sλ2η−1(Z +
1

η
∆2),0) (16)

where Γ and S are singular value soft-thresholding and
shrinkage-thresholding operator, respectively. In detail, for
any matrix A and parameter γ, the form of analytic solution
for S is as follows.

Sγ(A) = sign(A) max(|A| − γ, 0) (17)

Then, we have the definition of Γ as

Γγ(A) = USγ(Λ)V T (18)

whereA = UΛV T is the singular value decomposition.

4 Implementation Framework
In summary, Alg. 1 shows the steps of detailed implemen-
tation of the SDLA model in (1). The algorithm should not
be terminated until the change of objective value is smaller
than a pre-defined threshold (10−1 in our experiments). In
addition, we initializeD by Euclidean distance.

5 Experimental Results and Analysis
In this section, we evaluate the performance of SDLA for se-
lecting prototypes on several illustrative problems.

5.1 Clustering via Prototypes

To examine the performance of our proposed framework,
we consider the problem of text clustering using prototype-
s that act as cluster centers. We compare our SDLA mainly
with prototype selection based clustering methods, including
AP [Frey and Dueck, 2007], Kmeans [Duda et al., 2012],
Kmedoids [Kaufman and Rousseeuw, 1987], Spectral Clus-
tering (SC) [Ng et al., 2002], LSC [Chen and Cai, 2011], N-
SHLRR [Yin et al., 2016] and DS3 [Elhamifar et al., 2016].
To further verify the effectiveness of joint learning, we al-
so compare SDLA with Dis-SDLA, which is our assignment
model in (3) with given dissimilarity metric1. Note that many
selection methods (e.g. SSDS) cannot be used for clustering.

The standard document collections TDT22 [Cai et al.,
2005] is used for this task, which consists of 9 groups of
experiments corresponding to different cluster numbers. For
each given cluster number, 30 tests are conducted on differ-
ent randomly chosen clusters and the average performance is
computed. The metric, clustering accuracy (AC), is used to
measure the quality of prototypes. Table 1 shows the result-
s of those methods, which prove that the proposed method
works well with clustering task using prototypes. This is due
to the fact that SDLA selects the most representative proto-
types, thus improving grouping performance.

5.2 Evaluation by Classification

To further evaluate the discrimination of selected prototype-
s, we employ a classifier to compare the classification re-
sults when working on prototype set and source set. Here,
we choose the 1-Nearest Neighbor (1-NN) classifier since
it is parameter free and the results will be easily repro-
ducible [Fan et al., 2017]. Because the optimal number of
prototypes is unknown, we compare each prototype selec-
tion method, including no selection (All data), random selec-
tion of samples (Rand), Kmedoids [Kaufman and Rousseeuw,
1987], AP [Frey and Dueck, 2007], SDS [Cong et al., 2011],
SMRS [Elhamifar et al., 2012], DS3 [Elhamifar et al., 2016],
SSDS [Wang et al., 2017], Dis-SDLA and SDLA, with vary-
ing numbers of selected prototypes. To this end, we consider
the problems of scene categorization and handwriting recog-
nition. The experiments are conducted on the Fifteen Scene
Categories dataset [Lazebnik et al., 2006] and the USPS
digit dataset [Hull, 1994], which consist of 15 and 10 class-
es, respectively. We randomly select 80% of images in each
class to form the source training set and use the rest for test-
ing. For scene images, we take the 4096-dimensional CN-
N features [Simonyan and Zisserman, 2014] as input. Then
a subset of training set is selected for 1-NN classification,
whose averaged results over 6 times of execution with differ-
ent training set selections are shown in Figure 5. Obviously,
SDLA is the most closest to the ideal performance of using
all data. This comes from the fact that SDLA effectively re-
moves confusing samples by selecting the most discrimina-
tive prototypes.

1We choose the same dissimilarity metric with DS3.
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html



# cluster AP Kmeans Kmedoids SC LSC NSHLRR DS3 Dis-SDLA SDLA
2 77.18±1.10 57.74±1.39 96.72±0.90 79.34±2.12 65.31±2.09 86.65±1.28 96.72±1.55 95.39±1.95 97.06±0.83
3 68.28±1.91 62.74±2.80 50.96±2.14 78.11±1.42 94.36±1.48 89.35±2.33 97.45±0.96 96.23±1.15 97.72±1.01
4 63.95±2.79 64.47±1.95 65.79±1.65 86.65±1.03 71.84±2.84 82.62±1.93 99.47±0.67 97.91±0.75 98.12±0.74
5 60.41±1.39 45.11±3.65 60.27±2.17 68.59±3.70 71.95±1.03 78.35±1.27 71.80±2.04 72.82±3.09 76.55±2.82
6 63.52±1.69 66.05±2.31 69.48±3.95 74.73±1.03 87.68±1.43 74.09±2.38 74.93±1.76 73.21±1.79 80.36±1.18
7 65.89±1.48 56.65±1.40 53.34±3.63 62.05±2.70 65.78±3.75 70.77±2.27 70.65±1.66 70.23±1.65 76.22±1.16
8 52.37±3.11 68.49±1.49 58.06±3.95 71.66±2.34 70.02±2.58 71.69±1.22 70.92±3.75 71.29±2.24 78.18±1.51
9 59.78±3.70 68.51±2.89 65.95±2.96 69.30±2.55 69.66±2.14 70.13±1.14 69.45±3.26 69.10±3.84 75.50±2.25
10 60.11±1.81 52.83±3.24 58.41±2.92 76.81±1.35 72.30±1.19 79.17±1.25 82.51±1.61 81.33±1.47 86.68±1.35

ave. 63.50±2.11 60.30±2.35 64.33±2.69 74.10±2.02 74.32±2.06 78.09±1.67 81.43±1.91 80.77±1.99 85.15±1.42

Table 1: Clustering accuracy (AC) (%) of different methods on TDT2 Corpus.

(a) (b)

Figure 5: 1-NN classification results of different prototype selection methods on different datasets. (a) Fifteen Scene Categories dataset. (b)
USPS digit dataset.

Figure 6: Percentage of outliers among the prototypes selected by
different methods as a function of the fraction of outliers.

Figure 7: Percentage of outliers among the prototypes selected by
Dis-SDLA as a function of hyperparameter υ.

5.3 Robustness to Outliers
To evaluate the performance of SDLA for rejecting outlier-
s, we form a dataset of 9000 images, of which 1 − θ frac-
tion are randomly selected from the Extended YaleB face
database, and the remaining, corresponding to outliers, are
random images downloaded from the internet. For θ ∈
{20%, 30%, 40%, 50%}, we run SDLA as well as Kmedoids,
AP, SDS, SMRS, DS3, SSDS and Dis-SDLA to select rough-
ly 300 prototypes from the dataset. Figure 6 shows the per-
centage of outliers among the selected prototypes as we in-
crease the number of outliers in the dataset. Obviously, S-
DLA results in less outliers compared with other methods.
To facilitate the parameter tuning, we run Algorithm 1 with
λi = λ0/υ, where i = 1, 2, λ0 is computed from X [Elham-
ifar et al., 2012], and υ ∈ [2, 30]. Actually, the sensibility of
SDLA degenerates into that of Dis-SDLA. Figure 7 presents
the parameter analysis results for several values of υ.

6 Conclusion
In this work, we introduced a SDLA framework to select rep-
resentative and discriminative prototypes. Promising experi-
mental results show the effectiveness of SDLA.
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